
Part 1: Text Mining 

Data Pre-processing 
def normalizer(): This is user defined function used for cleansing the text data.  

Using ‘BeautifulSoup’ function from ‘bs4’ library and ‘lxml’ toolkit to remove XML and HTML encoding 
from tweets which come due to some hyperlink present in tweet. Also, Regular Expression(Regrex) is 
used to remove any numbers hyperlinks hastags, etc this expression is implemented using manual 
scripts. Expression used in this code is: "(@[A-Za-z0-9]+)|([^A-Za-z \t])|(\w+:\/\/\S+)" 

 
As we cannot explicitly implement machine learning model on raw text, we need to split each word like this 

['one', 'morning,', 'when', 'gregor', 'samsa', 'woke', 'from']. And convert all 

the words in lowercase as case sensitivity changes the impact of same word for machine. 

To remove stop words, like to, and, the, etc. from the tweet I have implemented stopword() function from 

nltk.corprus librar. We need to mention ‘english’ as attribute to remove stop words of English language there 

are 127 stop words for English language in NLTK. 

Lemmatizing words having similar meaning despite its tense using WordNet Corpus. e.g. Was -> (to) be, better -

> good, cats -> cat keeping the basic meaning of the word. 

Data Balancing: SMOTE(Synthetic Minority Over-sampling Technique) is used as the graph shows data is highly 

imbalanced and hence to avoid model taking bias decision which can affect the overall output of the deployed 

model. 
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TfidfVectorizer (): It is a function from sklearn library under feature_extraction.text class it 

takes several attributes like 1) min_df – When making the vocabulary, it ignores strictly terms that 
have documented for less than given value having default value = 1. In this code min_df is set as 5. 2) 
ngram_range – It extracts the words as a single word based on the lower and upper boundary of the 
range of n-values. Which is (1, 2) for this code hence including unigrams and bigrams. tfidf = 
TfidfVectorizer(sublinear_tf=True, min_df=5, norm='l2', ngram_range=(1, 2)) 
this are parameters for model creation code. 

Data Interpretation 
Cross-Validation Score and Confusion Matrix for Support Vector Classifier and Naïve Bayes Classifier 

where n_splits for KFold is 10 and shuffle=True and balanced target variable Y_SMOTE is used. 

 

Support Vector Classifier: 

Mean CV accuracy SVC Best CV accuracy for SVC TP TN FP FN 

0.9107879430626212 0.9201716738197425 422 1722 55 131 

 

Naïve Bayes Classifier 

Mean CV accuracy for NBC Best CV accuracy for NBC TP TN FP FN 

0.8327322356077721 0.8434148434148434 183 1783 13 352 

 

 

Conclusion 
Based on the outcomes of the number it tells that SVC is performing well as compared to NBC on 

training set MedReviews.csv. Best Cross-Validation accuracy for SVC is 92% making difference of 8% 

from that of NBC. Also, average mean Cross-Validation value for SVC is higher than NBC by 8%. Based 

on this, the SVC model is saved, and the vocabulary file is generated using this knowledge about the 

data for deployment process. After performing data normalization and cleansing SVC model is 

deployed on NoRatings.csv which will be test set. The vocabulary file generated from model creation 

code and SVC file which is created when model is saved will be implemented during deployment 

process. Therefore, after deployment new CSV file will be saved which will have predicted target class 

as per the SVC model. 



 

Part 2: Decision Tree Ensembles 

 Making Dataset adaptive for modelling: 
 Handling categorical variables: Transaction and Weekend class is converted using defined 

function ‘converter’. Month and VisitorType class are converted into numeric using the inbuilt 

map function. 

 Dividing dataset: The numerically converted dataset is then divided into label and feature sets 

where X: Independent variables and Y: Target variable (Transaction). 

 Normalization: Once all the values of each class are converted into numeric it is necessary to 

normalize it so that each feature has Mean as 0 and Variance as 1. Done using StandardScaler 

function from sklearn. 

 Splitting: Dataset is divided into train and test for proportion of 70% and 30% respectively for 

all three models and setting seed as 9 throughout the code to get same output each time it is 

executed. 

 Balancing: As shown by the plot, data is highly imbalance hence to avoid its consequence on 

the training model SMOTE (Synthetic Minority Over-sampling Technique) is used to balance 

the target variable. 

Once pre-processing steps on dataset is performed its necessary to tune the models. 

 Justification for hyperparameter tuning 
GridSearchCV and RandomizedSearchCV is useful in finding the best parameter values for different 

model instead of manually performing we just need to provide collection of parameters and its values 

and in return it will provide best fit for the parameters on applied model. Therefore, justification for 

setting Recall as Scoring Parameter while using GridSearchCV and RandomizedSearchCV for each 

model: 

As per the confusion matrix: 

 False Positive: Where Model predicts True for transaction class but, its False hence just loss of 

provided service not loss of valuable customer. 

False Negative: Where model predicts False for transaction class but, its True hence loosing customer 

who would have shopped. 

For any e-commerce website it’s important to know how many customers are using it and number of 

transaction taking place. As this will help in gaining some business intelligence by predicting the 

growth or knowing the trend, etc. Hence it is essential that developed model predicts more of the --- 

True Transaction class rather than False Transaction class. As per the definition recall is useful in 

finding the answer for How many relevant classes are predicted true? As it provides percentage for 

total relevant results correctly classified by your applied model. Therefore, while focusing on 

increasing number of transaction it is necessary to reduce False Negative predictions. 



 Random Forest 

Tuning without Feature Scaling 
Best Parameters for Random Forest without feature scaling: {'n_estimators': 40, 

'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': 38, 'criterion': 

'entropy', 'bootstrap': False} 

Significant Values and Classification Metrics 
 

Features 
Significant 

values 

PageValue 0.390358 

Month 0.090054 

ProductRelated_Duration 0.086705 

Administrative 0.083305 

ExitRate 0.083305 

ProductRelated 0.081132 

BounceRate 0.059919 

Administrative_Duration 0.051204 

Informational 0.022770 

Informational_Duration 0.020775 

VisitorType 0.013124 

Weekend 0.010509 

SpecialDay 0.006623 

 

Tuning after Feature Scaling 
Hence after observing the output of significant values of each feature I decided to remove least 

prominent features which are VisitorType, Weekend, SpecialDay the resultant values are better and 

hence avoided the trap of over-fitting the model. 

Best Parameters for Feature Scaled Random Forest: {'n_estimators': 40, 'min_samples_split': 2, 

'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': 38, 'criterion': 'entropy', 'bootstrap': 

False} 

Significant Values and Classification Metrics 
 

 

 

 

 

 

  

 

 

 

 

    

    Precision Recall F1-

Score 

Support 

No 

Transaction 

0.94 0.92 0.93 3091 

Transaction 0.64 0.70 0.67 583 

Accuracy  0.89 3674 

Macro Avg. 0.79 0.81 0.80 3674 

Weighted 

Avg. 

0.89 0.89 0.89 3674 

Features 
Significant 

Values 

PageValue 0.405287 

ExitRate 0.099144 

Month 0.095384 

ProductRelated_Duration 0.089888 

ProductRelated 0.089181 

Administrative 0.065328 

BounceRate 0.061292 

Administrative_Duration 0.055520 

Informational_Duration 0.020901 

Informational 0.018075 

 Precision Recall F1-

Score 

Support 

No 

Transaction 

0.95 0.92 0.93 3091 

Transaction 0.62 0.72 0.66 583 

Accuracy  0.88 3674 

Macro Avg. 0.78 0.82 0.80 3674 

Weighted 

Avg. 

0.89 0.88 0.89 3674 



     

 AdaBoost Model 

Hyperparameter Tuning 
Best estimators for AdaBoostClassifier: (algorithm='SAMME.R', base_estimator=None, 

learning_rate=1.0, n_estimators=9, random_state=9)  

Significant Values and Classification Metrics 

Features 
Significant 

Values 

Month 0.333333 

PageValue 0.222222 

Admiinistrative 0.222222 

Visitor Type 0.111111 

ExitRate 0.111111 

Weekend 0.000000 

SpecialDay 0.000000 

BounceRate 0.000000 

ProductRelated_Duration 0.000000 

ProductRelated 0.000000 

Informational_Duration 0.000000 

Administrative_Duration 0.000000 

 Gradient Boost  

Hyperparameter tuning 
Best estimators for Gradient Boost Classifier: {'n_estimators': 50, 'min_samples_leaf': 12, 

'max_depth': 13} 

Significant Values and Classification Metrics 

 
 

 

 

 

 
 

 

 

 

 
Precision Recall 

F1-

Score 
Support 

No 

Transaction 
0.96 0.89 0.92 3091 

Transaction 0.57 0.78 0.66 583 

Accuracy  0.87 3674 

Macro Avg. 0.76 0.83 0.79 3674 

Weighted 

Avg. 
0.89 0.87 0.88 3674 

 Precision Recall 
F1-

Score 
Support 

No 

Transaction 
0.95 0.93 0.94 3091 

Transaction 0.65 0.72 0.68 583 

Accuracy  0.89 3674 

Macro Avg. 0.80 0.83 0.81 3674 

Weighted 

Avg. 
0.90 0.89 0.90 3674 

Features 
Significant 

Values 

PageValue 0.634489 

Month 0.086293 

Administrative 0.056778 

ProductRelated 0.048463 

ExitRate 0.035557 

ProductRelated_Duration 0.034863 

Administrative_Duration 0.033281 

BounceRate 0.029766 

Informational_Duration 0.014315 

Informational 0.012526 

VisitorType 0.007269 

Weelend 0.005227 

SpecialDay 0.001173 



Interpretation 
Best Score for all the models is generated using GridSearchCV and RandomizedSearchCV were cross 

validation score is 5: 

Model Best Score 

Random Forest without Feature Scaling 0.9533111885924249 

Random Forest with Feature Scaling 0.9530356117010687 

Ada Boosting 0.8818478534958544 

Gradient Boosting 0.9349915345660825 

 

Confusion Matrix and ROC_AUC_SCORE for all the models:  

Model 
True 

Positive 

True 

Negative 

False 

Positive 

False 

Negative 
ROC_AUC_SCORE 

Random Forest without 

Feature Scaling 
411 2855 236 172 0.8143117877221148 

Random Forest with 

Feature Scaling 
419 2831 260 164 0.8172906124292681 

Ada Boosting 454 2743 348 129 0.8330728896430905 

Gradient Boosting 422 2863 228 161 0.8250398295721602 

 

Recommendations 
After tuning hyperparameters for all the models, the insights from the numbers provided is valuable 

for justification of recommendation. AdaBoost fits in for the criteria as it provides least False 

Negative values with highest ROC_AUC_SCORE despite having low Best Score. Providing  

0.8330728896430905 as ROC_AUC_SCORE. Also, it is less complex and does not need for feature 

scaling as its algorithm manages to provide best result by giving weightages to appropriate classes 

only. And compared to Random Forest and Gradient Boost its hyperparameter tuning and model 

deployment results are noticeable quicker. 

Therefore, implementing AdaBoost for real-world solution would be the best choice amongst all to 

increase the transaction. 


