
Part 1: Text Mining

Data Pre-processing
def normalizer(): This is user defined function used for cleansing the text data.

Using ‘BeautifulSoup’ function from ‘bs4’ library and ‘lxml’ toolkit to remove XML and HTML encoding
from tweets which come due to some hyperlink present in tweet. Also, Regular Expression(Regrex) is
used to remove any numbers hyperlinks hastags, etc this expression is implemented using manual
scripts. Expression used in this code is: "(@[A-Za-z0-9]+)|([^A-Za-z \t])|(\w+:\/\/\S+)"

As we cannot explicitly implement machine learning model on raw text, we need to split each word like this

['one', 'morning,', 'when', 'gregor', 'samsa', 'woke', 'from']. And convert all

the words in lowercase as case sensitivity changes the impact of same word for machine.

To remove stop words, like to, and, the, etc. from the tweet I have implemented stopword() function from

nltk.corprus librar. We need to mention ‘english’ as attribute to remove stop words of English language there

are 127 stop words for English language in NLTK.

Lemmatizing words having similar meaning despite its tense using WordNet Corpus. e.g. Was -> (to) be, better -

> good, cats -> cat keeping the basic meaning of the word.

Data Balancing: SMOTE(Synthetic Minority Over-sampling Technique) is used as the graph shows data is highly

imbalanced and hence to avoid model taking bias decision which can affect the overall output of the deployed

model.

 High 17898 Before SMOTE Low 5406

High 17898 After Smote Low 17898

TfidfVectorizer (): It is a function from sklearn library under feature_extraction.text class it

takes several attributes like 1) min_df – When making the vocabulary, it ignores strictly terms that
have documented for less than given value having default value = 1. In this code min_df is set as 5. 2)
ngram_range – It extracts the words as a single word based on the lower and upper boundary of the
range of n-values. Which is (1, 2) for this code hence including unigrams and bigrams. tfidf =
TfidfVectorizer(sublinear_tf=True, min_df=5, norm='l2', ngram_range=(1, 2))
this are parameters for model creation code.

Data Interpretation
Cross-Validation Score and Confusion Matrix for Support Vector Classifier and Naïve Bayes Classifier

where n_splits for KFold is 10 and shuffle=True and balanced target variable Y_SMOTE is used.

Support Vector Classifier:

Mean CV accuracy SVC Best CV accuracy for SVC TP TN FP FN

0.9107879430626212 0.9201716738197425 422 1722 55 131

Naïve Bayes Classifier

Mean CV accuracy for NBC Best CV accuracy for NBC TP TN FP FN

0.8327322356077721 0.8434148434148434 183 1783 13 352

Conclusion
Based on the outcomes of the number it tells that SVC is performing well as compared to NBC on

training set MedReviews.csv. Best Cross-Validation accuracy for SVC is 92% making difference of 8%

from that of NBC. Also, average mean Cross-Validation value for SVC is higher than NBC by 8%. Based

on this, the SVC model is saved, and the vocabulary file is generated using this knowledge about the

data for deployment process. After performing data normalization and cleansing SVC model is

deployed on NoRatings.csv which will be test set. The vocabulary file generated from model creation

code and SVC file which is created when model is saved will be implemented during deployment

process. Therefore, after deployment new CSV file will be saved which will have predicted target class

as per the SVC model.

Part 2: Decision Tree Ensembles

 Making Dataset adaptive for modelling:
 Handling categorical variables: Transaction and Weekend class is converted using defined

function ‘converter’. Month and VisitorType class are converted into numeric using the inbuilt

map function.

 Dividing dataset: The numerically converted dataset is then divided into label and feature sets

where X: Independent variables and Y: Target variable (Transaction).

 Normalization: Once all the values of each class are converted into numeric it is necessary to

normalize it so that each feature has Mean as 0 and Variance as 1. Done using StandardScaler

function from sklearn.

 Splitting: Dataset is divided into train and test for proportion of 70% and 30% respectively for

all three models and setting seed as 9 throughout the code to get same output each time it is

executed.

 Balancing: As shown by the plot, data is highly imbalance hence to avoid its consequence on

the training model SMOTE (Synthetic Minority Over-sampling Technique) is used to balance

the target variable.

Once pre-processing steps on dataset is performed its necessary to tune the models.

 Justification for hyperparameter tuning
GridSearchCV and RandomizedSearchCV is useful in finding the best parameter values for different

model instead of manually performing we just need to provide collection of parameters and its values

and in return it will provide best fit for the parameters on applied model. Therefore, justification for

setting Recall as Scoring Parameter while using GridSearchCV and RandomizedSearchCV for each

model:

As per the confusion matrix:

 False Positive: Where Model predicts True for transaction class but, its False hence just loss of

provided service not loss of valuable customer.

False Negative: Where model predicts False for transaction class but, its True hence loosing customer

who would have shopped.

For any e-commerce website it’s important to know how many customers are using it and number of

transaction taking place. As this will help in gaining some business intelligence by predicting the

growth or knowing the trend, etc. Hence it is essential that developed model predicts more of the ---

True Transaction class rather than False Transaction class. As per the definition recall is useful in

finding the answer for How many relevant classes are predicted true? As it provides percentage for

total relevant results correctly classified by your applied model. Therefore, while focusing on

increasing number of transaction it is necessary to reduce False Negative predictions.

 Random Forest

Tuning without Feature Scaling
Best Parameters for Random Forest without feature scaling: {'n_estimators': 40,

'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': 38, 'criterion':

'entropy', 'bootstrap': False}

Significant Values and Classification Metrics

Features
Significant

values

PageValue 0.390358

Month 0.090054

ProductRelated_Duration 0.086705

Administrative 0.083305

ExitRate 0.083305

ProductRelated 0.081132

BounceRate 0.059919

Administrative_Duration 0.051204

Informational 0.022770

Informational_Duration 0.020775

VisitorType 0.013124

Weekend 0.010509

SpecialDay 0.006623

Tuning after Feature Scaling
Hence after observing the output of significant values of each feature I decided to remove least

prominent features which are VisitorType, Weekend, SpecialDay the resultant values are better and

hence avoided the trap of over-fitting the model.

Best Parameters for Feature Scaled Random Forest: {'n_estimators': 40, 'min_samples_split': 2,

'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': 38, 'criterion': 'entropy', 'bootstrap':

False}

Significant Values and Classification Metrics

 Precision Recall F1-

Score

Support

No

Transaction

0.94 0.92 0.93 3091

Transaction 0.64 0.70 0.67 583

Accuracy 0.89 3674

Macro Avg. 0.79 0.81 0.80 3674

Weighted

Avg.

0.89 0.89 0.89 3674

Features
Significant

Values

PageValue 0.405287

ExitRate 0.099144

Month 0.095384

ProductRelated_Duration 0.089888

ProductRelated 0.089181

Administrative 0.065328

BounceRate 0.061292

Administrative_Duration 0.055520

Informational_Duration 0.020901

Informational 0.018075

 Precision Recall F1-

Score

Support

No

Transaction

0.95 0.92 0.93 3091

Transaction 0.62 0.72 0.66 583

Accuracy 0.88 3674

Macro Avg. 0.78 0.82 0.80 3674

Weighted

Avg.

0.89 0.88 0.89 3674

 AdaBoost Model

Hyperparameter Tuning
Best estimators for AdaBoostClassifier: (algorithm='SAMME.R', base_estimator=None,

learning_rate=1.0, n_estimators=9, random_state=9)

Significant Values and Classification Metrics

Features
Significant

Values

Month 0.333333

PageValue 0.222222

Admiinistrative 0.222222

Visitor Type 0.111111

ExitRate 0.111111

Weekend 0.000000

SpecialDay 0.000000

BounceRate 0.000000

ProductRelated_Duration 0.000000

ProductRelated 0.000000

Informational_Duration 0.000000

Administrative_Duration 0.000000

 Gradient Boost

Hyperparameter tuning
Best estimators for Gradient Boost Classifier: {'n_estimators': 50, 'min_samples_leaf': 12,

'max_depth': 13}

Significant Values and Classification Metrics

Precision Recall

F1-

Score
Support

No

Transaction
0.96 0.89 0.92 3091

Transaction 0.57 0.78 0.66 583

Accuracy 0.87 3674

Macro Avg. 0.76 0.83 0.79 3674

Weighted

Avg.
0.89 0.87 0.88 3674

 Precision Recall
F1-

Score
Support

No

Transaction
0.95 0.93 0.94 3091

Transaction 0.65 0.72 0.68 583

Accuracy 0.89 3674

Macro Avg. 0.80 0.83 0.81 3674

Weighted

Avg.
0.90 0.89 0.90 3674

Features
Significant

Values

PageValue 0.634489

Month 0.086293

Administrative 0.056778

ProductRelated 0.048463

ExitRate 0.035557

ProductRelated_Duration 0.034863

Administrative_Duration 0.033281

BounceRate 0.029766

Informational_Duration 0.014315

Informational 0.012526

VisitorType 0.007269

Weelend 0.005227

SpecialDay 0.001173

Interpretation
Best Score for all the models is generated using GridSearchCV and RandomizedSearchCV were cross

validation score is 5:

Model Best Score

Random Forest without Feature Scaling 0.9533111885924249

Random Forest with Feature Scaling 0.9530356117010687

Ada Boosting 0.8818478534958544

Gradient Boosting 0.9349915345660825

Confusion Matrix and ROC_AUC_SCORE for all the models:

Model
True

Positive

True

Negative

False

Positive

False

Negative
ROC_AUC_SCORE

Random Forest without

Feature Scaling
411 2855 236 172 0.8143117877221148

Random Forest with

Feature Scaling
419 2831 260 164 0.8172906124292681

Ada Boosting 454 2743 348 129 0.8330728896430905

Gradient Boosting 422 2863 228 161 0.8250398295721602

Recommendations
After tuning hyperparameters for all the models, the insights from the numbers provided is valuable

for justification of recommendation. AdaBoost fits in for the criteria as it provides least False

Negative values with highest ROC_AUC_SCORE despite having low Best Score. Providing

0.8330728896430905 as ROC_AUC_SCORE. Also, it is less complex and does not need for feature

scaling as its algorithm manages to provide best result by giving weightages to appropriate classes

only. And compared to Random Forest and Gradient Boost its hyperparameter tuning and model

deployment results are noticeable quicker.

Therefore, implementing AdaBoost for real-world solution would be the best choice amongst all to

increase the transaction.

